Learning Spatial Features from Audio-Visual Correspondence in Egocentric Videos

Sagnik Majumder, Ziad Al-Halah, Kristen Grauman; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 27058-27068

Abstract


We propose a self-supervised method for learning representations based on spatial audio-visual correspondences in egocentric videos. Our method uses a masked auto-encoding framework to synthesize masked binaural audio through the synergy of audio and vision thereby learning useful spatial relationships between the two modalities. We use our pretrained features to tackle two downstream video tasks requiring spatial understanding in social scenarios: active speaker detection and spatial audio denoising. Through extensive experiments we show that our features are generic enough to improve over multiple state-of-the-art baselines on both tasks on two challenging egocentric video datasets that offer binaural audio EgoCom and EasyCom. Project: http://vision.cs.utexas.edu/ projects/ego_av_corr.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{Majumder_2024_CVPR, author = {Majumder, Sagnik and Al-Halah, Ziad and Grauman, Kristen}, title = {Learning Spatial Features from Audio-Visual Correspondence in Egocentric Videos}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {27058-27068} }