-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Rasheed_2024_CVPR, author = {Rasheed, Hanoona and Maaz, Muhammad and Shaji, Sahal and Shaker, Abdelrahman and Khan, Salman and Cholakkal, Hisham and Anwer, Rao M. and Xing, Eric and Yang, Ming-Hsuan and Khan, Fahad S.}, title = {GLaMM: Pixel Grounding Large Multimodal Model}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {13009-13018} }
GLaMM: Pixel Grounding Large Multimodal Model
Abstract
Large Multimodal Models (LMMs) extend Large Language Models to the vision domain. Initial LMMs used holistic images and text prompts to generate ungrounded textual responses. Recently region-level LMMs have been used to generate visually grounded responses. However they are limited to only referring to a single object category at a time require users to specify the regions or cannot offer dense pixel-wise object grounding. In this work we present Grounding LMM (GLaMM) the first model that can generate natural language responses seamlessly intertwined with corresponding object segmentation masks. GLaMM not only grounds objects appearing in the conversations but is flexible enough to accept both textual and optional visual prompts (region of interest) as input. This empowers users to interact with the model at various levels of granularity both in textual and visual domains. Due to the lack of standard benchmarks for the novel setting of visually Grounded Conversation Generation (GCG) we introduce a comprehensive evaluation protocol with our curated grounded conversations. Our proposed GCG task requires densely grounded concepts in natural scenes at a large-scale. To this end we propose a densely annotated Grounding-anything Dataset (GranD) using our proposed automated annotation pipeline that encompasses 7.5M unique concepts grounded in a total of 810M regions available with segmentation masks. Besides GCG GLaMM also performs effectively on several downstream tasks e.g. referring expression segmentation image and region-level captioning and vision-language conversations.
Related Material