-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Song_2024_CVPR, author = {Song, Hae Jin and Khayatkhoei, Mahyar and AbdAlmageed, Wael}, title = {ManiFPT: Defining and Analyzing Fingerprints of Generative Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {10791-10801} }
ManiFPT: Defining and Analyzing Fingerprints of Generative Models
Abstract
Recent works have shown that generative models leave traces of their underlying generative process on the generated samples broadly referred to as fingerprints of a generative model and have studied their utility in detecting synthetic images from real ones. However the extend to which these fingerprints can distinguish between various types of synthetic image and help identify the underlying generative process remain under-explored. In particular the very definition of a fingerprint remains unclear to our knowledge. To that end in this work we formalize the definition of artifact and fingerprint in generative models propose an algorithm for computing them in practice and finally study its effectiveness in distinguishing a large array of different generative models. We find that using our proposed definition can significantly improve the performance on the task of identifying the underlying generative process from samples (model attribution) compared to existing methods. Additionally we study the structure of the fingerprints and observe that it is very predictive of the effect of different design choices on the generative process.
Related Material