Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Multi-Scale Aggregation and Anthropic Prior Knowledge

Bo Zou, Shaofeng Wang, Hao Liu, Gaoyue Sun, Yajie Wang, FeiFei Zuo, Chengbin Quan, Youjian Zhao; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 11601-11610

Abstract


Teeth localization segmentation and labeling in 2D images have great potential in modern dentistry to enhance dental diagnostics treatment planning and population-based studies on oral health. However general instance segmentation frameworks are incompetent due to 1) the subtle differences between some teeth' shapes (e.g. maxillary first premolar and second premolar) 2) the teeth's position and shape variation across subjects and 3) the presence of abnormalities in the dentition (e.g. caries and edentulism). To address these problems we propose a ViT-based framework named TeethSEG which consists of stacked Multi-Scale Aggregation (MSA) blocks and an Anthropic Prior Knowledge (APK) layer. Specifically to compose the two modules we design 1) a unique permutation-based upscaler to ensure high efficiency while establishing clear segmentation boundaries with 2) multi-head self/cross-gating layers to emphasize particular semantics meanwhile maintaining the divergence between token embeddings. Besides we collect 3) the first open-sourced intraoral image dataset IO150K which comprises over 150k intraoral photos and all photos are annotated by orthodontists using a human-machine hybrid algorithm. Experiments on IO150K demonstrate that our TeethSEG outperforms the state-of-the-art segmentation models on dental image segmentation.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Zou_2024_CVPR, author = {Zou, Bo and Wang, Shaofeng and Liu, Hao and Sun, Gaoyue and Wang, Yajie and Zuo, FeiFei and Quan, Chengbin and Zhao, Youjian}, title = {Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Multi-Scale Aggregation and Anthropic Prior Knowledge}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {11601-11610} }