OSDFace: One-Step Diffusion Model for Face Restoration

Jingkai Wang, Jue Gong, Lin Zhang, Zheng Chen, Xing Liu, Hong Gu, Yutong Liu, Yulun Zhang, Xiaokang Yang; Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), 2025, pp. 12626-12636

Abstract


Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{Wang_2025_CVPR, author = {Wang, Jingkai and Gong, Jue and Zhang, Lin and Chen, Zheng and Liu, Xing and Gu, Hong and Liu, Yutong and Zhang, Yulun and Yang, Xiaokang}, title = {OSDFace: One-Step Diffusion Model for Face Restoration}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {12626-12636} }