Learning to Detect Objects from Multi-Agent LiDAR Scans without Manual Labels

Qiming Xia, Wenkai Lin, Haoen Xiang, Xun Huang, Siheng Chen, Zhen Dong, Cheng Wang, Chenglu Wen; Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), 2025, pp. 1418-1428

Abstract


Unsupervised 3D object detection serves as an important solution for offline 3D object annotation. However, due to the data sparsity and limited views, the clustering-based label fitting in unsupervised object detection often generates low-quality pseudo-labels. Multi-agent collaborative dataset, which involves the sharing of complementary observations among agents, holds the potential to break through this bottleneck. In this paper, we introduce a novel unsupervised method that learns to Detect Objects from Multi-Agent LiDAR scans, termed DOtA, without using labels from external. DOtA first uses the internally shared ego-pose and ego-shape of collaborative agents to initialize the detector, leveraging the generalization performance of neural networks to infer preliminary labels. Subsequently, DOtA uses the complementary observations between agents to perform multi-scale encoding on preliminary labels, then decodes high-quality and low-quality labels. These labels are further used as prompts to guide a correct feature learning process, thereby enhancing the performance of the unsupervised object detection task. Extensive experiments on the V2V4Real and OPV2V datasets show that our DOtA outperforms state-of-the-art unsupervised 3D object detection methods. Additionally, we also validate the effectiveness of the DOtA labels under various collaborative perception frameworks. The code is available at https://github.com/xmuqimingxia/DOtA.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{Xia_2025_CVPR, author = {Xia, Qiming and Lin, Wenkai and Xiang, Haoen and Huang, Xun and Chen, Siheng and Dong, Zhen and Wang, Cheng and Wen, Chenglu}, title = {Learning to Detect Objects from Multi-Agent LiDAR Scans without Manual Labels}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {1418-1428} }