ImPosing: Implicit Pose Encoding for Efficient Visual Localization

Arthur Moreau, Thomas Gilles, Nathan Piasco, Dzmitry Tsishkou, Bogdan Stanciulescu, Arnaud de La Fortelle; Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, pp. 2892-2902

Abstract


We propose a novel learning-based formulation for visual localization of vehicles that can operate in real-time in city-scale environments. Visual localization algorithms determine the position and orientation from which an image has been captured, using a set of geo-referenced images or a 3D scene representation. Our new localization paradigm, named Implicit Pose Encoding (ImPosing), embeds images and camera poses into a common latent representation with 2 separate neural networks, such that we can compute a similarity score for each image-pose pair. By evaluating candidates through the latent space in a hierarchical manner, the camera position and orientation are not directly regressed but incrementally refined. Very large environments force competitors to store gigabytes of map data, whereas our method is very compact independently of the reference database size. In this paper, we describe how to effectively optimize our learned modules, how to combine them to achieve real-time localization, and demonstrate results on diverse large scale scenarios that significantly outperform prior work in accuracy and computational efficiency.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{Moreau_2023_WACV, author = {Moreau, Arthur and Gilles, Thomas and Piasco, Nathan and Tsishkou, Dzmitry and Stanciulescu, Bogdan and de La Fortelle, Arnaud}, title = {ImPosing: Implicit Pose Encoding for Efficient Visual Localization}, booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, month = {January}, year = {2023}, pages = {2892-2902} }