Real-World Super-Resolution via Kernel Estimation and Noise Injection

Xiaozhong Ji, Yun Cao, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020, pp. 466-467

Abstract


Recent state-of-the-art super-resolution methods have achieved impressive performance on ideal datasets regardless of blur and noise. However, these methods always fail in real-world image super-resolution, since most of them adopt simple bicubic downsampling from high-quality images to construct Low-Resolution (LR) and High-Resolution (HR) pairs for training which may lose track of frequency-related details. To address this issue, we focus on designing a novel degradation framework for real-world images by estimating various blur kernels as well as real noise distributions. Based on our novel degradation framework, we can acquire LR images sharing a common domain with real-world images. Then, we propose a real-world super-resolution model aiming at better perception. Extensive experiments on synthetic noise data and real-world images demonstrate that our method outperforms the state-of-the-art methods, resulting in lower noise and better visual quality. In addition, our method is the winner of NTIRE 2020 Challenge on both tracks of Real-World Super-Resolution, which significantly outperforms other competitors by large margins.

Related Material


[pdf]
[bibtex]
@InProceedings{Ji_2020_CVPR_Workshops,
author = {Ji, Xiaozhong and Cao, Yun and Tai, Ying and Wang, Chengjie and Li, Jilin and Huang, Feiyue},
title = {Real-World Super-Resolution via Kernel Estimation and Noise Injection},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2020}
}