FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation

Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, Chi-Keung Tang; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2869-2878


Over the past few years, we have witnessed the success of deep learning in image recognition thanks to the availability of large-scale human-annotated datasets such as PASCAL VOC, ImageNet, and COCO. Although these datasets have covered a wide range of object categories, there are still a significant number of objects that are not included. Can we perform the same task without a lot of human annotations? In this paper, we are interested in few-shot object segmentation where the number of annotated training examples are limited to 5 only. To evaluate and validate the performance of our approach, we have built a few-shot segmentation dataset, FSS-1000, which consists of 1000 object classes with pixelwise annotation of ground-truth segmentation. Unique in FSS-1000, our dataset contains significant number of objects that have never been seen or annotated in previous datasets, such as tiny daily objects, merchandise, cartoon characters, logos, etc. We build our baseline model using standard backbone networks such as VGG-16, ResNet-101, and Inception. To our surprise, we found that training our model from scratch using FSS-1000 achieves comparable and even better results than training with weights pre-trained by ImageNet which is more than 100 times larger than FSS-1000. Both our approach and dataset are simple, effective, and easily extensible to learn segmentation of new object classes given very few annotated training examples. Dataset is available at https://github.com/HKUSTCV/FSS-1000

Related Material

[pdf] [supp] [dataset]
author = {Li, Xiang and Wei, Tianhan and Chen, Yau Pun and Tai, Yu-Wing and Tang, Chi-Keung},
title = {FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}