Learning Unsupervised Hierarchical Part Decomposition of 3D Objects From a Single RGB Image

Despoina Paschalidou, Luc Van Gool, Andreas Geiger; The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1060-1070

Abstract


Humans perceive the 3D world as a set of distinct objects that are characterized by various low-level (geometry, reflectance) and high-level (connectivity, adjacency, symmetry) properties. Recent methods based on convolutional neural networks (CNNs) demonstrated impressive progress in 3D reconstruction, even when using a single 2D image as input. However, the majority of these methods focuses on recovering the local 3D geometry of an object without considering its part-based decomposition or relations between parts. We address this challenging problem by proposing a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives as well as their latent hierarchical structure without part-level supervision. Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives, where simple parts are represented with fewer primitives and more complex parts are modeled with more components. Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Paschalidou_2020_CVPR,
author = {Paschalidou, Despoina and Gool, Luc Van and Geiger, Andreas},
title = {Learning Unsupervised Hierarchical Part Decomposition of 3D Objects From a Single RGB Image},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}