Towards Bridging Semantic Gap to Improve Semantic Segmentation

Yanwei Pang, Yazhao Li, Jianbing Shen, Ling Shao; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 4230-4239


Aggregating multi-level features is essential for capturing multi-scale context information for precise scene semantic segmentation. However, the improvement by directly fusing shallow features and deep features becomes limited as the semantic gap between them increases. To solve this problem, we explore two strategies for robust feature fusion. One is enhancing shallow features using a semantic enhancement module (SeEM) to alleviate the semantic gap between shallow features and deep features. The other strategy is feature attention, which involves discovering complementary information (i.e., boundary information) from low-level features to enhance high-level features for precise segmentation. By embedding these two strategies, we construct a parallel feature pyramid towards improving multi-level feature fusion. A Semantic Enhanced Network called SeENet is constructed with the parallel pyramid to implement precise segmentation. Experiments on three benchmark datasets demonstrate the effectiveness of our method for robust multi-level feature aggregation. As a result, our SeENet has achieved better performance than other state-of-the-art methods for semantic segmentation.

Related Material

author = {Pang, Yanwei and Li, Yazhao and Shen, Jianbing and Shao, Ling},
title = {Towards Bridging Semantic Gap to Improve Semantic Segmentation},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}