Wetness and Color From a Single Multispectral Image

Mihoko Shimano, Hiroki Okawa, Yuta Asano, Ryoma Bise, Ko Nishino, Imari Sato; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3967-3975


Visual recognition of wet surfaces and their degrees of wetness is important for many computer vision applications. It can inform slippery spots on a road to autonomous vehicles, muddy areas of a trail to humanoid robots, and the freshness of groceries to us. In the past, monochromatic appearance change, the fact that surfaces darken when wet, has been modeled to recognize wet surfaces. In this paper, we show that color change, particularly in its spectral behavior, carries rich information about a wet surface. We derive an analytical spectral appearance model of wet surfaces that expresses the characteristic spectral sharpening due to multiple scattering and absorption in the surface. We derive a novel method for estimating key parameters of this spectral appearance model, which enables the recovery of the original surface color and the degree of wetness from a single observation. Applied to a multispectral image, the method estimates the spatial map of wetness together with the dry spectral distribution of the surface. To our knowledge, this work is the first to model and leverage the spectral characteristics of wet surfaces to revert its appearance. We conduct comprehensive experimental validation with a number of wet real surfaces. The results demonstrate the accuracy of our model and the effectiveness of our method for surface wetness and color estimation.

Related Material

author = {Shimano, Mihoko and Okawa, Hiroki and Asano, Yuta and Bise, Ryoma and Nishino, Ko and Sato, Imari},
title = {Wetness and Color From a Single Multispectral Image},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}