Multi-Image Matching via Fast Alternating Minimization

Xiaowei Zhou, Menglong Zhu, Kostas Daniilidis; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 4032-4040


In this paper we propose a global optimization-based approach to jointly matching a set of images. The estimated correspondences simultaneously maximize pairwise feature affinities and cycle consistency across multiple images. Unlike previous convex methods relying on semidefinite programming, we formulate the problem as a low-rank matrix recovery problem and show that the desired semidefiniteness of a solution can be spontaneously fulfilled. The low-rank formulation enables us to derive a fast alternating minimization algorithm in order to handle practical problems with thousands of features. Both simulation and real experiments demonstrate that the proposed algorithm can achieve a competitive performance with an order of magnitude speedup compared to the state-of-the-art algorithm. In the end, we demonstrate the applicability of the proposed method to match the images of different object instances and as a result the potential to reconstruct category-specific object models from those images.

Related Material

author = {Zhou, Xiaowei and Zhu, Menglong and Daniilidis, Kostas},
title = {Multi-Image Matching via Fast Alternating Minimization},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}