Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map
Liu Liu, Hongdong Li, Yuchao Dai; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2372-2381
Abstract
Given an image of a street scene in a city, this paper develops a new method that can quickly and precisely pinpoint at which location (as well as viewing direction) the image was taken, against a pre-stored large-scale 3D point-cloud map of the city. We adopt the recently developed 2D-3D direct feature matching framework for this task [23,31,32,42-44]. This is a challenging task especially for large-scale problems. As the map size grows bigger, many 3D points in the wider geographical area can be visually very similar-or even identical-causing severe ambiguities in 2D-3D feature matching. The key is to quickly and unambiguously find the correct matches between a query image and the large 3D map. Existing methods solve this problem mainly via comparing individual features' visual similarities in a local and per feature manner, thus only local solutions can be found, inadequate for large-scale applications. In this paper, we introduce a global method which harnesses global contextual information exhibited both within the query image and among all the 3D points in the map. This is achieved by a novel global ranking algorithm, applied to a Markov network built upon the 3D map, which takes account of not only visual similarities between individual 2D-3D matches, but also their global compatibilities (as measured by co-visibility) among all matching pairs found in the scene. Tests on standard benchmark datasets show that our method achieved both higher precision and comparable recall, compared with the state-of-the-art.
Related Material
[pdf]
[supp]
[
bibtex]
@InProceedings{Liu_2017_ICCV,
author = {Liu, Liu and Li, Hongdong and Dai, Yuchao},
title = {Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}