Uncertainty Estimation and Sample Selection for Crowd Counting

Viresh Ranjan, Boyu Wang, Mubarak Shah, Minh Hoai; Proceedings of the Asian Conference on Computer Vision (ACCV), 2020


We present a method for image-based crowd counting, one that can predict a crowd density map together with the uncertainty values pertaining to the predicted density map. To obtain prediction uncertainty, we model the crowd density values using Gaussian distributions and develop a convolutional neural network architecture to predict these distributions. A key advantage of our method over existing crowd counting methods is its ability to quantify the uncertainty of its predictions. We illustrate the benefits of knowing the prediction uncertainty by developing a method to reduce the human annotation effort needed to adapt counting networks to a new domain. We present sample selection strategies which make use of the density and uncertainty of predictions from the networks trained on one domain to select the informative images from a target domain of interest to acquire human annotation. We show that our sample selection strategy drastically reduces the amount of labeled data from the target domain needed to adapt a counting network trained on a source domain to the target domain. Empirically, the networks trained on the UCF-QNRF dataset can be adapted to surpass the performance of the previous state-of-the-art results on NWPU dataset and Shanghaitech dataset using only 17% of the labeled training samples from the target domain. Github Page: https://github.com/cvlab-stonybrook/UncertaintyCrowdCounting

Related Material

[pdf] [supp] [arXiv] [code]
@InProceedings{Ranjan_2020_ACCV, author = {Ranjan, Viresh and Wang, Boyu and Shah, Mubarak and Hoai, Minh}, title = {Uncertainty Estimation and Sample Selection for Crowd Counting}, booktitle = {Proceedings of the Asian Conference on Computer Vision (ACCV)}, month = {November}, year = {2020} }