-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Ke_2022_CVPR, author = {Ke, Lei and Danelljan, Martin and Li, Xia and Tai, Yu-Wing and Tang, Chi-Keung and Yu, Fisher}, title = {Mask Transfiner for High-Quality Instance Segmentation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {4412-4421} }
Mask Transfiner for High-Quality Instance Segmentation
Abstract
Two-stage and query-based instance segmentation methods have achieved remarkable results. However, their segmented masks are still very coarse. In this paper, we present Mask Transfiner for high-quality and efficient instance segmentation. Instead of operating on regular dense tensors, our Mask Transfiner decomposes and represents the image regions as a quadtree. Our transformer-based approach only processes detected error-prone tree nodes and self-corrects their errors in parallel. While these sparse pixels only constitute a small proportion of the total number, they are critical to the final mask quality. This allows Mask Transfiner to predict highly accurate instance masks, at a low computational cost. Extensive experiments demonstrate that Mask Transfiner outperforms current instance segmentation methods on three popular benchmarks, significantly improving both two-stage and query-based frameworks by a large margin of +3.0 mask AP on COCO and BDD100K, and +6.6 boundary AP on Cityscapes. Our code and trained models are available at https://github.com/SysCV/transfiner.
Related Material