-
[pdf]
[supp]
[bibtex]@InProceedings{Kolmet_2022_CVPR, author = {Kolmet, Manuel and Zhou, Qunjie and O\v{s}ep, Aljo\v{s}a and Leal-Taix\'e, Laura}, title = {Text2Pos: Text-to-Point-Cloud Cross-Modal Localization}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {6687-6696} }
Text2Pos: Text-to-Point-Cloud Cross-Modal Localization
Abstract
Natural language-based communication with mobile devices and home appliances is becoming increasingly popular and has the potential to become natural for communicating with mobile robots in the future. Towards this goal, we investigate cross-modal text-to-point-cloud localization that will allow us to specify, for example, a vehicle pick-up or goods delivery location. In particular, we propose Text2Pos, a cross-modal localization module that learns to align textual descriptions with localization cues in a coarse- to-fine manner. Given a point cloud of the environment, Text2Pos locates a position that is specified via a natural language-based description of the immediate surroundings. To train Text2Pos and study its performance, we construct KITTI360Pose, the first dataset for this task based on the recently introduced KITTI360 dataset. Our experiments show that we can localize 65% of textual queries within 15m distance to query locations for top-10 retrieved locations. This is a starting point that we hope will spark future developments towards language-based navigation.
Related Material