-
[pdf]
[supp]
[bibtex]@InProceedings{Zhang_2022_CVPR, author = {Zhang, Meina and Fang, Yingying and Ni, Guoxi and Zeng, Tieyong}, title = {Pixel Screening Based Intermediate Correction for Blind Deblurring}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {5892-5900} }
Pixel Screening Based Intermediate Correction for Blind Deblurring
Abstract
Blind deblurring has attracted much interest with its wide applications in reality. The blind deblurring problem is usually solved by estimating the intermediate kernel and the intermediate image alternatively, which will finally converge to the blurring kernel of the observed image. Numerous works have been proposed to obtain intermediate images with fewer undesirable artifacts by designing delicate regularization on the latent solution. However, these methods still fail while dealing with images containing saturations and large blurs. To address this problem, we propose an intermediate image correction method which utilizes Bayes posterior estimation to screen through the intermediate image and exclude those unfavorable pixels to reduce their influence for kernel estimation. Extensive experiments have proved that the proposed method can effectively improve the accuracy of the final derived kernel against the state-of-the-art methods on benchmark datasets by both quantitative and qualitative comparisons.
Related Material