Few-Shot Image Classification Along Sparse Graphs

Joseph F. Comer, Philip L. Jacobson, Heiko Hoffmann; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2022, pp. 4187-4195


Few-shot learning remains a challenging problem, with unsatisfactory 1-shot accuracies for most real-world data. Here, we present a new perspective for data distributions in the feature space of a deep network and show how to exploit this perspective for few-shot learning. First, we observe that nearest neighbors in the feature space are with high probability members of the same class while generally two random points from one class are not much closer to each other than two points between classes. This observation suggests that classes in feature space form sparse, loosely connected graphs instead of dense clusters. To exploit this property, we propose using label propagation to the nearest unlabeled data and then using a kernel PCA reconstruction error as decision boundary in feature-space for the data distribution of each class. Using this method, which we call "K-Prop," we demonstrate largely improved few-shot learning performances (e.g., 83% accuracy for 1-shot 5-way classification on the RESISC45 satellite-images dataset) for datasets for which a backbone network can be trained to produce high within-class nearest-neighbor probabilities. We demonstrate this relationship using six different datasets.

Related Material

[pdf] [supp] [arXiv]
@InProceedings{Comer_2022_CVPR, author = {Comer, Joseph F. and Jacobson, Philip L. and Hoffmann, Heiko}, title = {Few-Shot Image Classification Along Sparse Graphs}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {June}, year = {2022}, pages = {4187-4195} }