Mastering Spatial Graph Prediction of Road Networks

Anagnostidis Sotiris, Aurelien Lucchi, Thomas Hofmann; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 5408-5418


Accurately predicting road networks from satellite images requires a global understanding of the network topology. We propose to capture such high-level information by introducing a graph-based framework that given a partially generated graph, sequentially adds new edges. To deal with misalignment between the model predictions and the intended purpose, and to optimize over complex, non-continuous metrics of interest, we adopt a reinforcement learning (RL) approach that nominates modifications that maximize a cumulative reward. As opposed to standard supervised techniques that tend to be more restricted to commonly used surrogate losses, our framework yields more power and flexibility to encode problem-dependent knowledge. Empirical results on several benchmark datasets demonstrate enhanced performance and increased high-level reasoning about the graph topology when using a tree-based search. We further demonstrate the superiority of our approach in handling examples with substantial occlusion and additionally provide evidence that our predictions better match the statistical properties of the ground dataset.

Related Material

[pdf] [supp] [arXiv]
@InProceedings{Sotiris_2023_ICCV, author = {Sotiris, Anagnostidis and Lucchi, Aurelien and Hofmann, Thomas}, title = {Mastering Spatial Graph Prediction of Road Networks}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2023}, pages = {5408-5418} }