Generating and Exploiting Probabilistic Monocular Depth Estimates

Zhihao Xia, Patrick Sullivan, Ayan Chakrabarti; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 65-74

Abstract


Beyond depth estimation from a single image, the monocular cue is useful in a broader range of depth inference applications and settings---such as when one can leverage other available depth cues for improved accuracy. Currently, different applications, with different inference tasks and combinations of depth cues, are solved via different specialized networks---trained separately for each application. Instead, we propose a versatile task-agnostic monocular model that outputs a probability distribution over scene depth given an input color image, as a sample approximation of outputs from a patch-wise conditional VAE. We show that this distributional output can be used to enable a variety of inference tasks in different settings, without needing to retrain for each application. Across a diverse set of applications (depth completion, user guided estimation, etc.), our common model yields results with high accuracy---comparable to or surpassing that of state-of-the-art methods dependent on application-specific networks.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Xia_2020_CVPR,
author = {Xia, Zhihao and Sullivan, Patrick and Chakrabarti, Ayan},
title = {Generating and Exploiting Probabilistic Monocular Depth Estimates},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}